의학물리학

본문글자크기
  • [Med Phys .] Extension of matRad with a modified microdosimetric kinetic model for carbon ion treatment planning: Comparison with Monte Carlo calculation탄소 이온 치료계획을 위한 개선된 마이크로=키네틱 모델(MKM)을 사용한 matRad 확장 연구: 몬테카를로 연구

    서울의대 / 윤은택, 정성문*

  • 출처
    Med Phys .
  • 등재일
    2023 Sep
  • 저널이슈번호
    50(9):5884-5896. doi: 10.1002/mp.16449. Epub 2023 May 10
  • 내용

    바로가기  >

    Abstract
    Background: Treatment planning is essential for in silico particle therapy studies. matRad is an open-source research treatment planning system (TPS) based on the local effect model, which is a type of relative biological effectiveness (RBE) model.

    Purpose: This study aims to implement a microdosimetric kinetic model (MKM) in matRad and develop an automation algorithm for Monte Carlo (MC) dose recalculation using the TOPAS code. In addition, we provide the developed MKM extension as open-source tool for users.

    Methods: Carbon beam data were generated using TOPAS MC pencil beam irradiation. We parameterized the TOPAS MC beam data with a double-Gaussian fit and modeled the integral depth doses and lateral spot profiles in the range of 100-430 MeV/u. To implement the MKM, the specific energy data table for Z = 1-6 and integrated depth-specific energy data were acquired based on the Kiefer-Chatterjee track structure and TOPAS MC simulation, respectively. Generic data were integrated into matRad, and treatment planning was performed based on these data. The optimized plan parameters were automatically converted into MC simulation input. Finally, the matRad TPS and TOPAS MC simulations were compared using the RBE-weighted dose calculation results. A comparison was made for three geometries: homogeneous water phantom, inhomogeneous phantom, and patient.

    Results: The RBE-weighted dose (DRBE ) distribution agreed with TOPAS MC within 1.8% for all target sizes for the homogeneous phantom. For the inhomogeneous phantom, the relative difference in the range of 80% of the prescription dose in the distal fall-off region (R80) between the matRad TPS and TOPAS MC was 0.6% (1.1 mm). DRBE between the TPS and the MC was within 4.0%. In the patient case, the difference in the dose-volume histogram parameters for the target volume between the TPS and the MC was less than 2.7%. The relative difference in R80 was 0.7% (1.2 mm).

    Conclusions: The MKM was successfully implemented in matRad TPS, and the RBE-weighted dose was comparable to that of TOPAS MC. The MKM-implemented matRad was released as an open-source tool. Further investigations with MC simulations can be conducted using this tool, providing a good option for carbon ion research.

     

     

    Affiliations

    Euntaek Yoon 1 2, Jung-In Kim 2 3 4, Jong Min Park 2 3 4 5, Chang Heon Choi 2 3 4, Seongmoon Jung 2 3 5 6
    1Interdisciplinary program in Bioengineering, Graduate School, Seoul National University, Seoul, Republic of Korea.
    2Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
    3Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.
    4Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea.
    5Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
    6Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.

  • 키워드
    Monte Carlo simulation; RBE-weighted dose calculation; carbon ion therapy; microdosimetric kinetic model.
  • 덧글달기
    덧글달기
       IP : 3.17.154.171

    등록