핵의학

본문글자크기
  • [Nucl Med Biol.] Reactive oxygen species-driven HIF1α triggers accelerated glycolysis in endothelial cells exposed to low oxygen tension.

    [Nucl Med Biol.] Reactive oxygen species-driven HIF1α triggers accelerated glycolysis in endothelial cells exposed to low oxygen tension.

    성균관의대 / 백진영, 정경호, 이경한*

  • 출처
    Nucl Med Biol.
  • 등재일
    2017 Feb
  • 저널이슈번호
    45:8-14. doi: 10.1016/j.nucmedbio.2016.10.006. Epub 2016 Oct 26.
  • 내용

    바로가기  >

    Abstract

    Endothelial cells and their metabolic state regulate glucose transport into underlying tissues. Here, we show that low oxygen tension stimulates human umbilical vein endothelial cell 18F-fluorodeoxyglucose (18F-FDG) uptake and lactate production. This was accompanied by augmented hexokinase activity and membrane Glut-1, and increased accumulation of hypoxia-inducible factor-1α (HIF1α). Restoration of oxygen reversed the metabolic effect, but this was blocked by HIF1α stabilization. Hypoxia-stimulated 18F-FDG uptake was completely abrogated by silencing of HIF1α expression or by a specific inhibitor. There was a rapid and marked increase of reactive oxygen species (ROS) by hypoxia, and ROS scavenging or NADPH oxidase inhibition completely abolished hypoxia-stimulated HIF1α and 18F-FDG accumulation, placing ROS production upstream of HIF1α signaling. Hypoxia-stimulated HIF1α and 18F-FDG accumulation was blocked by the protein kinase C (PKC) inhibitor, staurosporine. The phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, blocked hypoxia-stimulated 18F-FDG uptake and attenuated hypoxia-responsive element binding of HIF1α without influencing its accumulation. Thus, ROS-driven HIF1α accumulation, along with PKC and PI3K signaling, play a key role in triggering accelerated glycolysis in endothelial cells under hypoxia, thereby contributing to 18F-FDG transport.

     

    Author information

    Paik JY1, Jung KH2, Lee JH2, Park JW2, Lee KH3.

    1Department of Nuclear Medicine, Samsung Medical Center, Seoul, Republic of Korea.

    2Department of Nuclear Medicine, Samsung Medical Center, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

    3Department of Nuclear Medicine, Samsung Medical Center, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. Electronic address: khnm.lee@samsung.com. 

     

  • 키워드
    (18)F–FDG; Endothelial cell; Glycolysis; HIF1α; Hypoxia; ROS​
  • 연구소개
    종양의 FDG PET 이미징에 있어 암세포뿐 아니라 혈관세포의 포도당 대사도 중요하고 여기에 HIF1α의 중요한 역할을 규명한 논문입니다. 혈관세포의 대사상태는 인근 조직으로의 포도당 수송에 중요한 영향을 미칩니다. 특히 종양의 경우 산소농도가 낮을 수 있는데 저산소증은 혈관내피세포의 FDG 섭취와 젖산 생산을 항진시킵니다. 본 논문에서는 이 현상이 Glut-1 발현증가와 HIF1α 축적 증가에 의해 일어남을 보였습니다. 이때 HIF1α 발현을 억제하면 저산소증에 의한 FDG 섭취항진은 차단되고, 반대로 HIF1α를 안정화시키면 산소농도를 회복시켜도 당대사 항진이 지속됩니다. 나아가 저산소증에 의한 당대사 항진 반응은 ROS에 의해 매개됨을 규명하였습니다. PET에서 보이는 FDG 섭취에 혈관세포의 대사도 기여한다는 것과 저산소증 여부가 중요함을 알린 논문입니다.
  • 덧글달기
    덧글달기
       IP : 3.15.229.113

    등록