방사선종양학

본문글자크기
  • 2025년 01월호
    [Nat Commun.] LLM-driven multimodal target volume contouring in radiation oncology방사선종양학에서 대형언어모델 주도 멀티모달 표적체적 윤곽모사

    연세의대, KAIST / 오유리, 박상준, 김진성*, 예종철*

  • 출처
    Nat Commun .
  • 등재일
    2024 Oct 24
  • 저널이슈번호
    15(1):9186. doi: 10.1038/s41467-024-53387-y.
  • 내용

    바로가기  >

    Abstract
    Target volume contouring for radiation therapy is considered significantly more challenging than the normal organ segmentation tasks as it necessitates the utilization of both image and text-based clinical information. Inspired by the recent advancement of large language models (LLMs) that can facilitate the integration of the textural information and images, here we present an LLM-driven multimodal artificial intelligence (AI), namely LLMSeg, that utilizes the clinical information and is applicable to the challenging task of 3-dimensional context-aware target volume delineation for radiation oncology. We validate our proposed LLMSeg within the context of breast cancer radiotherapy using external validation and data-insufficient environments, which attributes highly conducive to real-world applications. We demonstrate that the proposed multimodal LLMSeg exhibits markedly improved performance compared to conventional unimodal AI models, particularly exhibiting robust generalization performance and data-efficiency.

     

     

    Affiliations

    Yujin Oh # 1, Sangjoon Park # 2 3, Hwa Kyung Byun 4, Yeona Cho 5, Ik Jae Lee 2, Jin Sung Kim 6 7, Jong Chul Ye 8
    1Department of Radiology, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, MA, USA.
    2Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea.
    3Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, South Korea.
    4Department of Radiation Oncology, Yongin Severance Hospital, Yongin, Gyeonggi-do, South Korea.
    5Department of Radiation Oncology, Gangnam Severance Hospital, Seoul, South Korea.
    6Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea. jinsung@yuhs.ac.
    7Oncosoft Inc., Seoul, South Korea. jinsung@yuhs.ac.
    8Kim Jaechul Graduate School of AI, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea. jong.ye@kaist.ac.kr.
    #Contributed equally.

  • 편집위원

    기존의 자동 컨투어링에서 진보하여 LLM을 이용한 세그멘테이션을 시도

    덧글달기2025-01-03 17:34:16

  • 편집위원2

    본 논문은 방사선 치료를 위한 Target volume contouring을 위해 large language models(LLM)을 활용한 multimodal AI 모델인 LLMSeg를 개발하고 성능을 평가하였음. LLMSeg는 영상 정보와 임상 text 정보를 통합하여 기존 unimodal AI 모델에 비해 높은 Dice 점수와 외부 dataset에서의 강력한 일반화 성능을 보여줌. 특히, 데이터가 부족한 상황에서도 기존 모델 대비 우수한 데이터 처리능력을 입증함. 이러한 결과는 방사선 치료의 정밀도를 높이고, 임상 데이터와 영상 데이터를 효과적으로 결합하여 환자 맞춤형 치료 계획 수립에 기여하여 암환자의 방사선 치료 효율을 높일 수 있음에 그 의의가 있음.

    덧글달기2025-01-03 17:34:40

  • 덧글달기
    덧글달기
       IP : 18.97.14.90

    등록