의학물리학

본문글자크기
  • [Phys Med Biol.] 4차원 호흡유도 디지털 단층합성 영상 A respiratory-guided 4D digital tomosynthesis.

    가톨릭대 / 김동수, 김시용*, 서태석*

  • 출처
    Phys Med Biol.
  • 등재일
    2018 Dec 10
  • 저널이슈번호
    63(24):245007. doi: 10.1088/1361-6560/aaeddb.
  • 내용

    바로가기  >

    Abstract
    The aim of this research was to introduce and evaluate a respiratory-guided slow gantry rotation 4D digital tomosynthesis (DTS). For each of ten volunteers, two breathing patterns were obtained for 3 min, one under free breathing conditions and the other with visual respiratory-guidance using an in-house developed respiratory monitoring system based on pressure sensing. Visual guidance was performed using a 4 s cycle sine wave with an amplitude corresponding to the average of end-inhalation peaks and end-exhalation valleys from the free-breathing pattern. The scan range was 40 degrees for each simulation, and the frame rate and gantry rotation speed were determined so that one projection per phase should be included. Both acquisition time and the number of total projections to be acquired (NPA) were calculated. Applying the obtained respiration pattern and the corresponding sequence, virtual projections were acquired under a typical geometry of Varian on-board imager for two virtual phantoms, modified Shepp-Logan (mSL) and extended cardiac-torso (XCAT). For the XCAT, two different orientations were considered, anterior-posterior (i.e. coronal) and left-right (i.e. sagittal). Projections were sorted to ten phases and image reconstruction was made using a modified filtered back-projection. Reconstructed images were compared with the planned breathing data (i.e. ideal situation) by structural similarity index (SSIM) and normalized root-mean-square error (NRMSE). For each case, simulation with guidance (SwG) showed motion-related artefact reduction compared to that under free-breathing (SuFB). SwG required less NPA but provided slightly higher SSIM and lower NRMSE values in all phantom images than SuFB did. In addition, the distribution of projections per phase was more regular in SwG. Through the proposed respiratory-guided 4D DTS, it is possible to reduce imaging dose while improving image quality. (Institutional Review Board approval: MC17DESI0086).

     


    Author information

    Kim DS1, Lee S, Kim TH, Kang SH, Kim KH, Shin DS, Kim S, Suh TS.
    1
    Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. Program of Medical Physics and Engineering, Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea.

  • 덧글달기
    덧글달기
       IP : 18.116.40.177

    등록