의학물리학

본문글자크기
  • [Med Phys.] Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.

    [Med Phys.] Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.

    연세대 / 최성훈, 김희중*

  • 출처
    Med Phys.
  • 등재일
    2018 Mar 3.
  • 저널이슈번호
    doi: 10.1002/mp.12843. [Epub ahead of print]
  • 내용

    바로가기  >

    그림1. 개발된 영상장치의 하드웨어 모식도와 사진

    그림2. 총 3가지 촬영 세트에 적용된 기존 FBP, SART 기술과 제안된 CS 알고리즘의 폐결절 확대영상

    그림3. 저선량 흉부촬영 단층영상합성영상의 임상적 가치를 확인하기 위해 같은 팬텀의 일반촬영 (a, b, f, g)과 흉부 CT (e, j)를 제시하였고, 이를 단층영상합성영상의 기존 알고리즘 (c, h)과 제안된 알고리즘 (d, i)와 비교하였다.

     

    Abstract
    PURPOSE:
    This work describes the hardware and software developments of a prototype chest digital tomosynthesis (CDT) R/F system. The purpose of this study was to validate the developed system for its possible clinical application on low-dose chest tomosynthesis imaging.

    METHODS:
    The prototype CDT R/F system was operated by carefully controlling the electromechanical subsystems through a synchronized interface. Once a command signal was delivered by the user, a tomosynthesis sweep started to acquire 81 projection views (PVs) in a limited angular range of ±20°. Among the full projection dataset of 81 images, several sets of 21 (quarter view) and 41 (half view) images with equally spaced angle steps were selected to represent a sparse view condition. GPU-accelerated and total-variation (TV) regularization strategy-based compressed sensing (CS) image reconstruction was implemented. The imaged objects were a flat-field using a copper filter to measure the noise power spectrum (NPS), a Catphan® CTP682 quality assurance (QA) phantom to measure a task-based modulation transfer function (MTFTask ) of three different cylinders' edge, and an anthropomorphic chest phantom with inserted lung nodules. The authors also verified the accelerated computing power over CPU programming by checking the elapsed time required for the CS method. The resultant absorbed and effective doses that were delivered to the chest phantom from two-view digital radiographic projections, helical computed tomography (CT), and the prototype CDT system were compared.

    RESULTS:
    The prototype CDT system was successfully operated, showing little geometric error with fast rise and fall times of R/F x-ray pulse less than 2 and 10 ms, respectively. The in-plane NPS presented essential symmetric patterns as predicted by the central slice theorem. The NPS images from 21 PVs were provided quite different pattern against 41 and 81 PVs due to aliased noise. The voxel variance values which summed all NPS intensities were inversely proportional to the number of PVs, and the CS method gave much lower voxel variance by the factors of 3.97-6.43 and 2.28-3.36 compared to filtered backprojection (FBP) and 20 iterations of simultaneous algebraic reconstruction technique (SART). The spatial frequencies of the f50 at which the MTFTask reduced to 50% were 1.50, 1.55, and 1.67 cycles/mm for FBP, SART, and CS methods, respectively, in the case of Bone 20% cylinder using 41 views. A variety of ranges of TV reconstruction parameters were implemented during the CS method and we could observe that the NPS and MTFTask preserved best when the regularization and TV smoothing parameters α and τ were in a range of 0.001-0.1. For the chest phantom data, the signal difference to noise ratios (SDNRs) were higher in the proposed CS scheme images than in the FBP and SART, showing the enhanced rate of 1.05-1.43 for half view imaging. The total averaged reconstruction time during 20 iterations of the CS scheme was 124.68 s, which could match-up a clinically feasible time (<3 min). This computing time represented an enhanced speed 386 times greater than CPU programming. The total amounts of estimated effective doses were 0.12, 0.53 (half view), and 2.56 mSv for two-view radiographs, the prototype CDT system, and helical CT, respectively, showing 4.49 times higher than conventional radiography and 4.83 times lower than a CT exam, respectively.

    CONCLUSIONS:
    The current work describes the development and performance assessment of both hardware and software for tomosynthesis applications. The authors observed reasonable outcomes by showing a potential for low-dose application in CDT imaging using GPU acceleration.

     


    Author information

    Choi S1, Lee H1, Lee D2, Choi S2, Lee CL1, Kwon W3, Shin J4, Seo CW1, Kim HJ1,2.
    1
    Department of Radiological Science, Yonsei University, 1 Yonseidae-gil, Wonju, 26493, Korea.
    2
    Department of Radiation Convergence Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, 26493, Korea.
    3
    Department of Radiology, Wonju Severance Christian Hospital, 20 Ilsan-ro, Wonju, 26426, Korea.
    4
    LISTEM Corporation, 94 Donghwagongdan-ro, Munmak-eup, Wonju, Korea.

  • 키워드
    GPU ; development of a digital tomosynthesis R/F system; dose reduction; fast image reconstruction
  • 연구소개
    본 논문은 새롭게 개발된 프로토타입의 흉부촬영용 디지털 단층영상합성 (CDT) R/F 시스템의 하드웨어와 소프트웨어에 관한 내용입니다. 개발된 시스템을 이용하여 저선량 흉부촬영 단층영상합성영상의 임상적용 가능성을 검증하는 데 목적이 있습니다. 하드웨어 구성으로 X선관과 검출기가 회전중심으로 선형적인 움직임을 갖도록 모터이동을 제어하는 인터페이스를 구성하였으며, 총 3개의 촬영 세트를 21장 (25% 선량), 41장 (50% 선량), 81장 (100% 선량) 획득하였습니다. 획득된 각 촬영 세트에 대해 단일 GPU를 이용한 고속 CUDA 프로그래밍을 적용하여 저선량 CS알고리즘을 구현하였습니다. 이에 대한 대조군으로 기존의 알고리즘 (FBP, SART)을 동일한 세트에 적용하여 제안된 알고리즘의 향상성을 확인하였습니다. 연구결과, 하드웨어는 허용오차범위에서 정상적으로 영상을 획득할 수 있었고, 소프트웨어 측면에서는 제안된 알고리즘이 해상도를 유지하면서 기존 FBP와 SART 보다 잡음력이 각각 5배와 3배 낮은 성능을 보였습니다. 또한, 모조 폐결절의 신호 대 잡음비도 기존보다 1.5배 향상된 것을 확인할 수 있었습니다. 제안된 알고리즘은 GPU 가속을 적용하여 30번의 반복 재구성에 3분미만의 소요시간을 나타내어 임상에서도 유용하게 사용할 수 있다고 판단됩니다. 본 연구는 의학물리 분야의 가장 기초적인 X선 영상장치의 하드웨어와 소프트웨어 개발 및 성능평가를 독자가 알아듣기 쉽게 설명하였습니다. 또한, 최근 각광받고 있는 GPU 가속프로그래밍기술을 잘 설명하여 영상재구성에 관심 있는 연구자들에게 소개 및 도움이 될 만한 좋은 정보라 생각합니다.
  • 편집위원

    저 선량 일지라도 광여 피폭에 의해 발생 가능한 방사선 폐렴의 가능성을 감소시키기 위한 연구이므로 임상적으로 의미가 있으며 또한 GPU를 사용하여 계산속도를 300배 이상 증가 시킨 점이 흥미로웠습니다.

    2018-04-17 11:05:36

  • 덧글달기
    덧글달기
       IP : 35.172.223.130

    등록